1. Insert HEALIX BR™ Dual Threaded Suture Anchor adjacent to the articular margin on the medial tuberosity.

2. Group like colored suture limbs together and pass either anteriorly or posteriorly with EXPRESSEW® II Flexible Suture Passer.

3. Grasp and remove inner suture limbs (one violet and one blue) together and tie a secure knot outside the shoulder.

4. Pull opposite limbs to advance knot into the subacromial space securing the medial aspect in a mattress fashion.

5. Place limbs into VERSALOK® Suture Anchor. Insert VERSALOK Anchor into the bone and load deployment gun. Once sutures are tensioned deploy anchor.

Now with the leading U.S. biocomposite material!1

*Bio-Corkscrew FT and Fiberwire are registered trademarks of Arthrex, Inc.

1 Based on U.S. data on file at DePuy Mitek. 2 Compared with SPIRALOK™ Anchor.

3 In a long-term controlled study, BIOCRYL® RAPIDE™ and PLA materials were evaluated in the cortical femoral bone of Beagles. Data on file at DePuy Mitek.

Five years of clinical success with knee and shoulder implants³.

DePuy Mitek’s evolutionary suture anchor is now offered in our proprietary BIOCRYL® RAPIDE™.

- Dual thread pattern maximizes pull-out strength by independently engaging both cortical and cancellous bone
- Cannulation channels blood to the surface
- Internally driven design provides increased torque capabilities and insertion confidence²
- Preloaded with ORTHOCORD® Suture
 » 55 lbs of tensile strength¹
 » 45% less stiff than Fiberwire*

BIOCRYL RAPIDE composite is exclusively developed by DePuy Mitek in association with Advanced Technologies and Regenerative Medicine, LLC. Developed for use when your procedure calls for the beneficial results of a bio-replaceable implant. BIOCRYL RAPIDE promotes optimized resorption and strength and has been proven in pre-clinical trials to resorb and be replaced with bone in 24 months¹.

BIOCRYL RAPIDE is an innovative TCP/PLGA composite (30% osteoconductive ß-TriCalcium Phosphate (TCP) and 70% faster resorbing PLGA) that is shown to completely resorb and promote bone formation within the implant profile¹.

BIOCRYL RAPIDE’s resorption progressed from minor changes at 3 months to marked resorption by 24 months. Following resorption, bone formation was seen within the implant profile. By comparison, PLA implants exhibited significantly slower resorption over time³.

Our Process Defines the Difference

A proprietary manufacturing process known as Micro Particle Dispersion (MPD) Technology makes the BIOCRYL RAPIDE a homogeneous blend of TCP and PLGA particles. Dispersion of the composite particles is critical to the material strength properties¹.

Side-By-Side Anchor Pull-Out¹

Average Load (lbs.)

- 66.4 HEALIX BR™ with ORTHOCORD
- 51.2 Bio-Corkscrew FT* with Fiberwire*

Average Load (lbs.)

<table>
<thead>
<tr>
<th>Year</th>
<th>Anchor Type</th>
<th>Load (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>Metal</td>
<td>70</td>
</tr>
<tr>
<td>1994</td>
<td>PLA</td>
<td>65</td>
</tr>
<tr>
<td>1999</td>
<td>PLA Composite</td>
<td>60</td>
</tr>
<tr>
<td>2004</td>
<td>MILAGRO® Interference Screw</td>
<td>55</td>
</tr>
<tr>
<td>2007</td>
<td>BIOKNOTLESS® BR & LUPINE® BR Anchors</td>
<td>50</td>
</tr>
<tr>
<td>2008</td>
<td>HEALIX BR™ Suture Anchor</td>
<td>45</td>
</tr>
<tr>
<td>2009</td>
<td>GYRFON™ BR Suture Anchor</td>
<td>40</td>
</tr>
</tbody>
</table>